presented in Working paper of U de Montreal, 1999
Increasing Ridership for Rail Rapid Transit :
A Case Study of Guangzhou*
Zhang yunquan
(Zhongshan University and Université de Montr閍l)
Abstract
The paper will become Chapter 1 in the doctoral dissertation to be presented in 2000. In the context of urbanization and urban traffic congestion, in particular developing countries and China, the significance of constructing rail rapid transit (RRT) in metropolitan areas is addressed. Three aspects of literatures on RRT definition, characteristics and evolution ; transit ridership studies; and market segmentation are reviewed.The methodology consists of comparative study based on case cities --Montreal, Toronto, San Francisco, Hong Kong and Singapore; the case of Guangzhou; and sample survey. Transferable suggestions will be made for application to urban areas in developing countries and China.
keywords: rail rapid transit; ridership; market segmentation; Guangzhou
1. Context
A philosopher once said ‘ transportaton is civilization, perhaps you think the saying is somewhat exaggerated, but it is substantially right. At least, modern transportation is a symbol of civilization and progress of human kind. It is well known that the most fundemental needs of human--food, clothing, housing, and travelling, are closely concerned with transportation, directly or indirectly.
From the experiences and lessons in many countries, it is necessary to recognize and rethink the future and orientation of urban transit. In developed countries , traffic congestions not only arises in urban areas, but in freeways and suburbias. In developing countries, the situations in urban areas are being worse. Revitalization of urban transit and intensive utilization of land use is accepted as concoidant awareness by public and foresighted personnels. Rapid rail transit is an important component of urban transit, it will contribute to benefits for mankind, However, due to its cost, construction time , communication and automatic signal controls, many issues and impacts are worth studying and approaching.The findings will be very useful for decision-making and construction of rail transit in China and other developing countries.
1.1 Rapid Urbanization in Developing Countries, in Particular China
In early 19th century, industrial revolution broke out and led to the great improvement
of productivity. While early cities were typically the center of production and commerce due to the effectiveness of aggregation and economy of scales in Western countries, the cities were like a gigantic magnet attracting a great amount of farmer from rural areas into city for making their livings. Thus, urban sprawl took place with economic development
* The author would like to be grateful to Dr C.Comtois and Dr B. Slack for helpful comments on my early draft.
and urbanization is the result of industrialization. Then global urbanization level was about 10%. After World War II, world population are dramatically increasing ,in particular developing countries. In 1990, the world ‘s urbanization reached 46.1% ( Xu,et al 1995). In 1995, there were 5.7 billion population in the world, it is estiamted that the sum will be up to 9.4 billion in 2030. About 90% of the increase occur in developing countries. The 90% of new incremental population will concentrate in urban areas (Laquian, 1996). The number of cities with 1 million people increased from 197 in 1981 to 309 in 1995 ,and there were 14 metropolises with morn than10 million population , over 50% of which were in developing countries(Liu,1998).
China is the most populours in the world, with 1.224 billion in 1997, accounting for 21%, 55.5% in APEC. The urbanization level was 26.4%, less than the world’s average (46.1%), and urban population was 0.214 billion. But by 2000, the urbanization will be up to 47% (Industry Canada,1997).The total cities increased from 191 (1978) to 467(1990), and 666(1997)( Xu, 1995; Wu,1998).
1.2. Large scale of investment in transport infrastructure
Transportation , with energy and communication are the dominant factors restraining the high speed development in Chinese economy. With in-depth reform in ecomonic system and transition of socialist market economy, the emphases are placed on the investment of large scales in the transportation . The budgets will be reached US$100 billion in transport infrastructure and $10-15 billion in rail rapid transit(Wu,1998; Pendakur,1992). For example, by November,1998, 180 billion RMB ($21.7 billion ) was pooled in highway infrastructure, total road length was 1.26 million km, and freeways exceeded 6000 km(People抯 Daily,1998,12.10).
1.3 The need for rapid rail transit(RRT) in urban areas
It was reported that rapid urban growth had taken place and there were 666 cities total ,33 cities with 1 million population in China (1996). The rapid economic growth is the principal contributor to urban development in contemporary China. China has become the rapidest in annual rate of 11% during 1981--1994. Though the ASEAN financial crisis, the GDP rate was 7.8 % through expanding internal demand to stimulate economic growth in 1998, when the rate turned negative increase in Hongkong, Thailand, Phillipine.
Rapid economic growth led to vast flows in passengers and freight transportation. Traffic congestion is becoming an extensive , serious problem confronting with municipal authorities. The bus operating speed runs 15-20 km/h, furthermore,10-15 km/h in central urban areas (Stares and Liu, 1996). The issue of transportation not only has impacts on economic development, but on environmental externalities, such as poorer air quality, longer trip time and traffic accidents.
It is well known that rapid rail transit ,as one of modern public transport modes with higher capacity, speed,safety, reliablity and environment-friendly, is playing more and more role in most of metropolitan regions. However, the system’s non-flexibility, longer construction period and lion-share vast capital and operating costs usually aggravate pressure and burdens for most metropolis, even though rapid rail systems have completely operated for years. Rarely can you find that no subsidies are supplied by municipalitis except for Hong Kong (Allport, 1997). Obviously, transit riderships are closely related to revenues or profit of operators. Currently, there are increasing trends of diversified investors, public and private sectors, in China, and confronting with a dilemma both to increase passenger volume and to reduce traffic congestion under insufficient resources.
2.Problem
How to attract ridership for new RRT?
3. Literature Review
3.1 Definition of rapid rail transit (RRT)
A RRT system generally serves on urban area, using high-speed,electricially power passenger rail cars operating in trains in exclusive right-of-way, without grade crossings and with high platforms. The tracks may be in underground tunnels, on elevated structures, in open cuts, at surface level, or any combination. Other terms are: metro; subway, underground, heavy rail transit, rapid rail, metropolitan railways, etc(TCPR ,1996)
3.2 Characteristics and Historical studies of RRT
3.2.1. Characteristics of rapid rail transit
Rapid rail transit system is main part of urban transit systems, which include bus transit, light rail systems , rapid rail transit (metro,or U-Bahn in Germany) ,and suburban rails or commuter train . In boarder sense, rail transit systems involve metro, light rail transit (LRT), suburban rail and trolleyways or streetcars. The rapid rail transit (RRT) in the paper refers to so called metro, subways or underground railways. RRT invariably operates on completely exclusive rights-of-way, which may be underground , elevated or in cutting, and at high speeds up to 120 kph. Average operating speed between two stops is 30--35 kph, it can provide the highest capacity of 70,000 passengers per hour per direction. The train typically carried about 750 passengers, and station spacing is 1 km or less in the urban areas , not more than 2 km in the suburbs.
Construction of metro is a difficult work, there are several types of building subways , such as ‘cut-and cover’, deep-level boring by shield, ‘ umbrella’, or laying pre-cast concrete tunnel underwater.
Due to high passenger volumes, RRT systems usually require sophisticated signalling and control devices. The stations are built with wide,high-level platforms facilitating rapid loading and unloading , and usually equipped with escalators. Uderground RRT needs comprehensive ventilation, particularly in hard climate to keep comfortable in train cars. Meanwhile, the systems require advanced technology in vehicles, civil construction and operating management.
The disadvantages of the systems are costly in construction. The investment of US$120 million /km or above ,operating cost US $0.10-0.15 per passenger-km may be needed. It is mainly dependent on constructing methods, geological and hydrological conditions. The systems lack more flexibility than bus modes, needing be supplemented by buses to provide feeder services for rail stations. If whole public transit systems are involved in diversified ownership, such as public and private sectors, there usually exist in difficulty of how to share operational revenues. In addditon, the construction of rapid rail system would take longer --at least five years, which obviously would affect urban surface transit to a larger extent. Farthermore, the costs of modifying original routes are likely to be enormous, but it is permitted to extend rail routes from terminals.
The advantages of RRT can provide passengers with quickness, comfort, safety and reliability. Using clean energy--electricity, leads to no pollution to atmosphere. Its operating cost is relatively lower than that of other modes. RRT can increase modal choice and business efficiency for passengers, promoting urban and regional development, upgrading urban image and amenity of communties. RRT 憇 characteristics is shown in Table 1 in comparison with other transit modes.
Table 1 Key characteristics of RRT compared with other transit modes
Characteristics LRT Bus Commuter Rail Automated Guideway RRT
System cost:
Initial M L/M L/H H H++
operating M H H H L
Attributes:
reliability excel. fair good super excel.
grade separation vary less more 100% 100%
automatic No No No Yes Yes
entrained vehicle Yes No Yes Maybe Yes
Public perception:
ride quality good fair good good good
route identity easy hard easy easy easy/hard
social acceptability H L H H H/L
Railroad involvement:
operating labour No No Yes No No
freight coordination maybe No maybe No No
Source: Adapted from Schumann,J. W. (1989)
3.2.2. Historical studies of rail transit
In 1863, the first subway in the world was opened in London, then it was the biggest city around th e world. The event remarked the beginning of raid rail transit. In fact , RRT is a kind of application of convertional railways or railroads in urban areas. Hence, telling of the history of rail trasit , it is reasonable to date back history of railway advances.
Unlike shipping, road and water teansport with a history of several centuries , raiways have a relatively recent history of about 150 years (Simon P. Ville, 1990). The context, iron rail and the steam locomotive were separately developed. The earliest railways or wagonways, were simple wooden tracks with lower frictional resistance. In 18th century, wooden tracks were useed in transporting coal to riverside staiths. Then the tracks were replaced by iron because of its greater durability and lower friction. In 1821, John Birkinshow patented of rolling wrought iron for rails. In the second half of 19th century, steel rails replaced iron. In 1804, Richard Trevithick developed a high pressure steam engine, later Stephenson innovated the engine into useful locomotive called ‘ Rocket’, which 1829 was applied to route from Liverpool to Manchester, the 1st steam-driven passenger railway in the world.
Britain led the world in the construction of railway system, then transfered to other countries in Europe. By 1850, nearly 10,000 km (9797 km) of railways had been built,German and France ranked the 2nd and 3rd , 5856 km and 2915 km respectively. By 1910, total railways in Europe reached 307,535 km. Most European railway systems had been completed in 1914 (Simon, 1990).
In 1869, the transcontinent railways between New York and San Francisco were opened. In 1881, another great railway , Montreal to Vancouver in Canada was completed. In 1964, high-speed trains were produced in France, then in Japan, at operating speed of more than 200 kph (Rodrigue, 1998). Nowadays, supertrain TGV is able to run up to 350 kph, becoming effective rivalry to expressway and airlines for intercity or interregional services. In April, 1998, the SNCF company in France launched a new package of easier fares for rail passengers, in last 3 years there have occurred in strong increase of international rail passengers, SNCF expected a good return of profitability for the year of 2000 (Pepy, 1998).
On the other hand, rapid rail transit almost kept pace with development of mainline railways.In fact, underground railways may be of same loading gauge as surface railways. It is the power supply that may be different from surface railways. The current supply in underground is ususally made with the 3rd rail pickup. After 1860 in London , some main line railways developed commuter traffic, and acute traffic congestion led to the construction of world抯 first underground railway, and in 1863 the 1st phase was opened.Then the 1st deep-level tube was completed in 1890. From then on , construction of RRT was quickly widespread to Europe, North America, later Latin America and Asia.
Approximate openning years of the 1st phase of subway in the world are shown as followings.
Table 2 Historical records of subways in the world
Regions and city Year opened
Europe
London 1863
Glasgow 1896
Budapest 1896
Paris 1898
Berlin 1902
Hamburg 1912
Madrid 1919
Barcelona 1924
Athens 1925
Milan 1964
Rome 1955
Moscow 1962
Stockholm 1972
Munchen 1972
Rotterdam 1968
Nor